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[1] The performance of the probabilistic multimodel prediction (PMMP) system of the
APEC Climate Center (APCC) in predicting the Asian summer monsoon (ASM)
precipitation at a four-month lead (with February initial condition) was compared with
that of a statistical model using hindcast data for 1983–2005 and real-time forecasts for
2006–2011. Particular attention was paid to probabilistic precipitation forecasts for the
boreal summer after the mature phase of El Niño and Southern Oscillation (ENSO). Taking
into account the fact that coupled models’ skill for boreal spring and summer precipitation
mainly comes from their ability to capture ENSO teleconnection, we developed the
statistical model using linear regression with the preceding winter ENSO condition as
the predictor. Our results reveal several advantages and disadvantages in both forecast
systems. First, the PMMP appears to have higher skills for both above- and below-normal
categories in the six-year real-time forecast period, whereas the cross-validated statistical
model has higher skills during the 23-year hindcast period. This implies that the
cross-validated statistical skill may be overestimated. Second, the PMMP is the better
tool for capturing atypical ENSO (or non-canonical ENSO related) teleconnection,
which has affected the ASM precipitation during the early 1990s and in the recent decade.
Third, the statistical model is more sensitive to the ENSO phase and has an advantage
in predicting the ASM precipitation after the mature phase of La Niña.
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the long-lead probabilistic prediction for the Asian summer monsoon precipitation (1983–2011) based on the APCC multimodel
system and a statistical model, J. Geophys. Res., 117, D04102, doi:10.1029/2011JD016308.

1. Introduction

[2] The multimodel ensemble (MME) approach was
developed for quantifying forecast uncertainties that stem
from model formulations [Krishnamurti et al., 1999, 2000;
Doblas-Reyes et al., 2000; Shukla et al., 2000; Palmer et al.,
2000], and has been recognized as an effective tool to
improve dynamical weather and climate forecasts. Indeed,
this approach is used by several major operational centers
for seasonal climate prediction [Palmer et al., 2004; Climate

Test Bed, 2006; Lee et al., 2009]. In particular, since 2006,
the Asia-Pacific Economic Cooperation (APEC) Climate
Center (APCC) has produced long-range seasonal forecasts
with up to a six-month lead time using an MME of coupled
ocean–atmosphere–land models for use by National Hydro-
logical and Hydrometeorological Services within the APEC
[Lee et al., 2009].
[3] Using historical retrospective forecast data (usually

referred to as hindcast, as shown by Graham et al. [2005],
Palmer et al. [2004], andWang et al. [2009]), most previous
studies focused on deterministic long-lead coupled predic-
tions [Wang et al., 2008; Liang et al., 2009; Chowdary et al.,
2010; Lee et al., 2010; S. S. Lee et al., 2011]. However,
climate forecasts are known to be associated with uncer-
tainties, which can be quantified in terms of probabilities.
Thus, probabilistic forecasts not only provide more useful
information but are also of greater value to end users for
decision-making [Murphy, 1977; Krzysztofowicz, 1983;
Palmer et al., 2004; Richardson, 2006; Alessandri et al.,
2011]. Generalizing the concept to MME predictions,
APCC has recently developed a probabilistic seasonal
prediction system based on MME outputs [Min et al., 2009;
Y. M. Min et al., Improvement of the APCC probabilistic
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multi-model seasonal prediction by model calibration and
combination, submitted to Climate Dynamics, 2011].
[4] Overall, state-of-the-art coupled models have shown

significantly high skill in ENSO predictions with lead times
of six months and beyond [Jin et al., 2008; Wang et al.,
2009]. On the other hand, it is known that such climate
models generally have difficulties in predicting the summer
mean precipitation over the Asian summer monsoon (ASM)
region, even with a one-month lead time [Wang et al., 2007,
2008, 2009; Kug et al., 2008; Lee et al., 2010; S. S. Lee
et al., 2011]. However, recent studies suggest that model
prediction skill for the summer precipitation tends to
increase after the mature phase of El Niño and Southern
Oscillation (ENSO), particularly over East Asia and the
western North Pacific (WNP) monsoon region [Wang et al.,
2009; Liang et al., 2009; Chowdary et al., 2010; J.-Y. Lee
et al., 2011; S. S. Lee et al., 2011; Lee and Wang, 2012].
Thus, the lagged impact of ENSO on the ASM precipitation
can be exploited for developing a statistical prediction
model.
[5] Numerical models that represent the dynamics of the

atmosphere, ocean, and land should be able to give better
seasonal forecasts than purely statistical approaches, because
of their ability to handle a wide range of linear and nonlinear
interactions and their potential resilience to the changing
climate [van Oldenborgh et al., 2005]. Nonetheless, statis-
tical methods are still widely used in seasonal predictions
and, in some cases, tend to have prediction skills comparable
to those of dynamical models [Anderson et al., 1999;
Barnston et al., 1999; van Oldenborgh et al., 2005]. Fur-
thermore, statistical forecasts also have an advantage in that
knowledge obtained from data analysis can be easily
applied. However, application of the statistical approach to
long-lead prediction requires careful use of conventional
statistical modeling techniques, in particular, due to the rel-
atively short history of the observed database and the exis-
tence of long-term changes in the climate system. It is
therefore worthwhile to investigate the extent to which such
a physically based statistical model can outperform dynam-
ical models in predicting the ASM precipitation.
[6] With this motivation, the present study aims at evalu-

ating the long-lead probabilistic multimodel prediction
(PMMP) system of APCC assembled from four coupled
models initiated in February for the real-time forecast period
of 2006–2011 as well as the hindcast period of 1983–2005,

focusing on the ASM precipitation prediction after the
mature phase of ENSO. The rest of this paper is organized as
follows. Section 2 describes the coupled models and their
hindcasts being considered, and the observational data and
methodology used in the present study. Verification of the
PMMP for the ASM precipitation in terms of reliability
diagrams and relative operating characteristic score (ROCS)
for the hindcast period is presented in section 3. Verification
of a regression-based statistical model for the same period is
shown in section 4. Section 5 compares the real-time fore-
cast skill (2006–2011) of the dynamical and statistical
models for the ASM precipitation. Finally, the results are
summarized and their significance is discussed in section 6.

2. Data and Methodology

2.1. The APCC PMMP System

[7] APCC launched its six-month-lead seasonal climate
prediction using four ocean–atmosphere–land coupled
models (Table 1), which is issued four times a year. For this
study, predictions for the seasons of March–April–May
(MAM) and June–July–August (JJA) are evaluated, with the
coupled models initiated in February. All coupled model
hindcast experiments cover the 23-year period of 1983–
2005, and their real-time forecasts for the six-year period of
2006–2011 are also considered. The PMMP is constructed
based on an uncalibrated multimodel approach, with model
weights inversely proportional to the errors in the forecast
probability associated with the model sampling errors [Min
et al., 2009], and a non-parametric empirical ranking
method for estimating tercile-based categorical probabilities.

2.2. Statistical Model

[8] Motivated by the fact that the ASM precipitation tends
to be more predictable after the mature phase of ENSO, we
developed a regression-based statistical model with the
ENSO condition in the preceding boreal winter as the pre-
dictor. The conditional probability P(BjA) is defined as the
transfer function of the predictand and the predictor. This
conditional probability is the probability of some event B,
given the occurrence of some other event A; for our case, A
is the preceding winter ENSO condition (defined as the
value of the Niño 3.4 index; see section 2.3) and B repre-
sents the impact of an ENSO event on the ASM rainfall. In
other words, the probabilistic composites are formulated

Table 1. Acronyms and Description of Models Used in This Study

Institute Model AGCM Resolution OGCM Resolution Ensemble Member Reference

APCC CCSM3a CAM3b T85 L26 POP1.3 gxlv3 L40 5 Jeong et al. [2008]
NCEPc CFSd GFSe T62 L64 MOM3 1/3° lat � 5/8° lon L27 15 Saha et al. [2006]
FRCGCf SINTEX-Fg ECHAM4h T106 L19 OPA 8.2 2°cos(lat) � 2°lon L31 9 Luo et al. [2005]
SNUi SNU SNU T42 L21 MOM2.2 1/3° lat � 1° lon L32 6 Ham and Kang [2010]

aCommunity Climate System, version 3.0.
bCommunity Atmospheric Model, version 3.0.
cNational Centers of Environmental Prediction.
dClimate Forecast System.
eGlobal Forecast System.
fFrontier Research Center for Global Change.
gScale INTeraction Experiment-FRCGC.
hThe fourth-generation atmospheric general circulation model of European Centre for Medium-Range Weather Forecasts–Deutsches

Klimarechenzentrum: Hamburg.
iSeoul National University.
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based on the probabilities of the ASM rainfall for ENSO
in a given state such as El Niño (totally 7 years), La Niña
(8 years), and the neutral state (8 years) during the training
period. In a cross-validated mode, the precipitation field for
the forecast year is not reflected in the composite.
[9] The statistical forecast model is constructed as follows.

First, the probability of the Niño 3.4 index is estimated as a
portion of the climatological probability distribution func-
tion of the indices during the training or cross-validated
hindcast period. The probability PB of the predictand B is
computed as follows:

PBðEjÞ ¼
X3

i¼1

PBjAðEjÞPAðEiÞ

where PA is the probability of the predictor A, and Ej and Ei

are the j and i events respectively [in this case the above
normal (AN), near normal (NN), or below normal (BN) cat-
egories]. For our statistical model, the probabilistic forecast
field for the ASM precipitation is then calculated by com-
bining the probability of the status of ENSO (PA) with the
associated composite maps (PBjA). Finally, in order to com-
pare the statistical with the dynamical forecast, we produced
a cross-validated statistical forecast for the 23 years from
1983 to 2005, as well as an independent forecast covering
2006–2011 (with 1983–2005 being the training period).

2.3. Observational Data Sets

[10] The observed precipitation data used in this study are
the Climate Anomaly Monitoring System (CAMS) and Out-
going Longwave Radiation (OLR) Precipitation Index (OPI)
product (CAMS OPI [Janowiak and Xie, 1999]). CAMS OPI
is a precipitation analysis created by merging observations
from rain gauges with satellite estimates to obtain the monthly

mean global precipitation in quasi real time. CAMS OPI was
found to be reliable for monitoring large-scale precipitation
variation over the East Asian sector [Sohn et al., 2012]. This
rainfall data set is used to assess model forecasting skills and
form the probabilistic composite maps for ASM precipitation
based on the Niño 3.4 index. All data used in this study are
interpolated onto a 2.5° � 2.5° grid.
[11] To define the ENSO condition, the Niño 3.4 index is

used, which is obtained from the optimum interpolation (OI)
of sea surface temperature (SST) data [Reynolds et al., 2002].
Periods during which the standardized value of the DJF Niño
3.4 index is greater than 0.5 are identified as El Niño events;
they are the winters of 1982/83, 1986/87, 1987/88, 1991/92,
1994/95, 1997/98, 2002/03, and 2009/10. The boreal winters
of 1983/84, 1984/85, 1985/86, 1988/89, 1995/96, 1998/99,
1999/2000, 2000/2001, 2005/06, 2007/08, 2008/09, and
2010/11, when the Niño 3.4 index is less than �0.5, are
identified as La Niña events.

2.4. Probabilistic Forecast Assessments

[12] To evaluate the forecast skills, we use reliability
(attributes) diagrams [Murphy, 1973; Murphy and Winkler,
1977; Wilks, 1995; Jolliffe and Stephenson, 2003; Atger,
2003, 2004], the relative operating characteristic (ROC
[Swets, 1973; Mason, 1982; Wilks, 1995; Mason and
Graham, 1999; Richardson, 2000; Zhu et al., 2002])
curves, and the area under the ROC curve (ROCS hereafter
[Green and Swets, 1966]), following the recommendations
of the World Meteorological Organization (WMO) Stan-
dardized Verification System for Long-Range Forecasts
(SVS–LRF [World Meteorological Organization, 2002];
further details are given byMin et al. [2009]). The reliability
diagram presents the relative frequency of an observed event
against the forecast probability of the event for the bins into

Figure 1. TCC between observations and the MME prediction for (a, c) MAM and (b, d) JJA precipita-
tion during all years (Figures 1a and 1b) and years after mature phase of ENSO (Figures 1c and 1d).
Dashed and solid lines denote the threshold values for the 90% and 95% confidence levels, respectively.
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which the forecasts are grouped. The diagonal connecting
the points (0, 0) and (1, 1) represents the perfect forecast, i.
e., for resolution and reliability. Thus, the closer the curve to
the diagonal, the higher is the skill of the forecast. The ROC
is the signal detection curve obtained by plotting a graph of
hit rate against false alarm rate over a range of different
probability thresholds. To assess the skill of the forecasts
against climatological forecasts in each category, we use the
Brier skill score (BSS) [Murphy, 1973; Stanski et al., 1989]
(detailed descriptions are given by Wilks [1995]). The sta-
tistical significance of the obtained verification scores was
assessed using the Monte Carlo approach [Stephenson and
Doblas-Reyes, 2000]. For this, we randomly scrambled the
forecast fields 500 times in the time domain.

3. Evaluation of the PMMP

[13] Wang et al. [2009] demonstrated that BSS and
ROCS—two skill metrics for probabilistic forecasts—yield
a similar spatial distribution of skills and are also similar to
the pattern associated with the temporal correlation coeffi-
cient (TCC), a skill measure of deterministic MME fore-
casts. Thus, to begin with, we examine the TCC skill of the
MME comprising the four coupled models for predicting
MAM and JJA precipitation with February initial conditions,
for the hindcast period of 1983–2005. Here, the MME
average was computed using the simple composite method
(i.e., with equal weights for all models).
[14] From the results shown in Figure 1, it can be seen that

the deterministic MME has much better skill in MAM than
in JJA, especially from the eastern Indian Ocean to the
western Pacific Ocean and over Central Asia, some parts of
East Asia (including Korea and Japan), and central to eastern
north China (adjoining Mongolia). We also compared the
TCC skills for the MME prediction based on all years

(Figures 1a and 1b; totally 23 years), those after the mature
phase of ENSO (Figures 1c and 1d; totally 15 years; see
also section 2.3), and also the remaining normal seasons
(8 years). The similarity between the results for all years and
only those after mature ENSO events suggests that the
coupled models’ skill mainly comes from their ability in
capturing the impact of ENSO. For MAM precipitation, their
skill over the western Pacific after the peak of ENSO is even
higher than that based on the whole hindcast record. The
lagged impact of ENSO on the ASM rainfall in the model
environments still remained significant in the subsequent
JJA season, although the models had lower skill in most
continental Asian locations. In contrast, for normal years, it
was found that the one-month lead MAM forecast skill is not
better than the four-month lead JJA forecast skill (figures not
shown).
[15] Figure 2 shows the general performance of the

PMMP in predicting seasonal precipitation in terms of the
spatial distribution of the ROCS. Most areas with significant
skill in MAM prediction are located in the region from the
eastern Indian Ocean to the western Pacific Ocean and over
Central Asia and some parts of East Asia for the AN category
(Figure 2a). Similarly, the skill for the BN category occupied
most of the abovementioned locations as well as the western
Indian Ocean. It is noted that the ROCS plots for the AN and
BN categories display patterns very similar to the TCC score
of the MAM deterministic forecast (see Figure 1a). For JJA,
the skill of the probabilistic MME decreases drastically,
especially over continental Asia. Overall, the above analysis
reveals that the coupled model MME is capable of predicting
MAM mean precipitation over some parts of Asia with high
fidelity, but has difficulties in predicting JJA mean rainfall
over most ASM locations.
[16] Figure 3 shows regionally aggregated reliability dia-

grams for the PMMP with the corresponding frequency

Figure 2. ROCS of the PMMP for (a, b) MAM and (c, d) JJA precipitation for AN (Figures 2a and 2c)
and BN categories (Figures 2b and 2d). The black dots indicate grid points for which ROCS is significant
at the 95% confidence level, which was obtained by a Monte Carlo test with 500 random trials.
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histograms for the Asia monsoon region (0°–50°N, 40°–
150°E) and East Asia (20°–50°N, 90°–150°E). The PMMP
generally underestimates (i.e., above the diagonal line) in
low probability and overestimates (i.e., below the diagonal
line) in high probability compared with the observed relative
frequency (except the AN category for MAM over the ASM
region). For MAM precipitation, the PMMP curve only
deviates slightly from the diagonal. In addition, for the AN
and the BN categories, the MAM precipitation forecasts
outperform climatology (i.e., reliability is equal to resolu-
tion) over the ASM region and are definitely more skillful
than random forecasts (i.e., no resolution) over East Asia.
The skill of the PMMP for JJA precipitation is lower than
that for MAM; however, note that the JJA precipitation
forecasts are still more skillful than random guesses over the
ASM region for both categories. Curves of both categories
for East Asian JJA precipitation are out of phase. The AN
curve even falls beneath the no-resolution line for high
probability, exhibiting minimal resolution. To quantify the
bias of the PMMP, we also evaluated the BSS value for each
category. The regionally aggregated BSS values of the

PMMP are shown in the top-left corner of the plots. For the
AN category, the MAM and JJA precipitation forecasts are
more skillful than those for the BN category in both regions
(i.e., positive BSS indicates that the PMMP outperforms
climatological forecasts in the AN category). In addition, the
analyses show that the predictions become less reliable as
the forecast lead time increases for both regions.
[17] Regionally aggregated ROC curves and their ROCS

were also used to assess performance of the PMMP during
the hindcast period (results not shown). The ROC curves
were found to be consistent with the reliability diagrams (see
Figure 3). For the MAM forecast, the curve is farther away
from the diagonal, deviated to the left and upward, compared
with its JJA counterpart. The regionally aggregated ROCS
for the MAM forecast are much higher than for the JJA
forecast and are also above 0.5 (i.e., the value for no-skill
forecast), so that the forecast could be considered skillful. In
contrast, ROCS for the JJA forecast over the ASM region
and East Asia are relatively low with values of 0.55 (0.55)
and 0.51 (0.51) for AN (BN), respectively.

Figure 3. Reliability diagram and frequency histogram for the PMMP for (a, b) MAM and (c, d) JJA pre-
cipitation for the ASM region (0°–50°N, 40°–150°E) (Figures 3a and 3c) and East Asia (20°–50°N, 90°–
150°E) (Figures 3b and 3d). White (gray) bars and open (closed) circles indicate relative frequency and
reliability for the AN (BN) category, respectively. The area-averaged values of BSS over each region
are provided to the upper left of each panel.
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[18] In summary, we examined the forecast skills of the
deterministic MME prediction and the PMMP for the ASM
precipitation. Our results reveal that coupledmodels are capable
of predicting the ASM rainfall variability during MAM but not
JJA. It is noticed that the forecast skill mainly stems from the
coupled models’ ability to capture climate anomalies after the
mature phase of ENSO. However, the forecasts exhibit very
low skill after normal winters in both MAM and JJA.

4. Evaluation of the Statistical Model

[19] To develop a statistical model for predicting the ASM
precipitation, we first investigated the lagged impact of

ENSO on the precipitation. Figure 4 shows the temporal
correlation coefficient between the DJF Niño 3.4 index and
precipitation in the following JJA. Positive correlation is
found over Western to Central Asia, Northeast Asia adjoin-
ing the WNP, and the equatorial central and eastern Pacific
regions adjacent to Latin America. Negative signals are
found in the tropical western Pacific, in the South Pacific
trailing the South Pacific convergence zone (SPCZ), and
over parts of Brazil. It is noteworthy that strong signals are
found over the western Pacific, consistent with previous
studies showing that the East Asian summer monsoon var-
iations are linked to decaying El Niño or La Niña [Wang

Figure 4. TCC between Nino 3.4 index for the preceding DJF and the mean precipitation in the follow-
ing JJA season. Values with absolute magnitudes of 0.526, 0.413, and 0.352 represent the 99%, 95%, and
90% confidence levels, respectively.

Figure 5. Conditional probabilistic composites of the JJA seasonal mean precipitation after mature phase
of ENSO for (top) El Niño and (bottom) La Niña years for (a, d) AN and (b, e) BN categories. (c, f) Com-
bined maps showing regions where either the AN, NN, or BN category is dominant, based on Pearson’s
chi-square (c2) test.
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et al., 2004, 2008, 2009; J.-Y. Lee et al., 2011; S. S. Lee
et al., 2011; Lee and Wang, 2012; Chowdary et al., 2010].
[20] To depict the precipitation patterns related to the

ENSO condition in the previous winter, probabilistic com-
posites were computed by ranking JJA mean precipitation in
selected years for which the preceding DJF Niño 3.4 index
was �0.5 (+0.5) standard deviations below (above) average
(see also section 2). Figure 5 shows the probabilistic com-
posites of JJA mean precipitation over the ASM region for
the AN and BN categories after the mature phase of ENSO
during the training period. The regional distribution of
probabilistic composites associated with El Niño for the AN
category mainly shows wetter-than-normal conditions over
the Indian Ocean, Central Asia, central China, and the WNP
region covering Korea and the Japanese archipelago. The
strongest signals for the BN category are found more east-
ward that for AN, and show drier-than-normal conditions
along coastal East Asia (spanning Korea, Taiwan, and
southern China), as well as over eastern India and the trop-
ical western Pacific. However, the impact of La Niña man-
ifested as drier-than-normal conditions over many parts of
the ASM region. No significant signal appeared for the AN
category except over the Philippines and the adjoining the
tropical western Pacific.

[21] In summary, the lagged impact of El Niño on the
ASM precipitation is characterized by a more local response
that includes above normal probabilities over the western
Indian Ocean, Central Asia, western-to-central part of
northern China, and Northeast Asia, and below normal
probabilities from the western tropical Pacific extending into
Indochina. However, it is more likely for continental Asia to
experience drier-than-normal conditions after the mature
phase of La Niña.
[22] The statistical model was developed by projecting the

status of the preceding ENSO onto a composite map pro-
duced by leave-one-year-out cross-validation, as described
in section 2.2. It is interesting to note that the statistical
model has better skill than the dynamical models, especially
over Northeast Asia and some part of Southeast Asia during
the cross-validation period, as shown in Figure 6. This is
consistent with the statistical model performance in seasonal
forecasting of southwest monsoon rainfall over India
[Rajeevan et al., 2007]. Because of the design of the statis-
tical model, the spatial distribution of its forecast skill for the
two categories is similar to that of the observed probability
composites for El Niño and La Niña (Figure 5). Further
assessment of the statistical model prediction for MAM
precipitation revealed much higher skill for the forecast

Figure 6. ROCS of the statistical model for the JJA mean precipitation for (a) AN and (b) BN categories.

Figure 7. Reliability diagram and frequency histogram for the statistical model for JJA mean precipita-
tion over (a) the ASM region and (b) East Asia.
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based on the recent physical relation than those with a long
lag, despite using the same predictor (figures not shown).
This suggests that the physical relation may weaken due to
accumulation of uncertainties as the lag time increases.
[23] The performance of the statistical model for boreal

summer precipitation was also assessed using regionally
aggregated reliability diagrams and ROC curves for the
cross-validation period. In comparison with the PMMP, there
are three interesting features. First, the statistical prediction
also underestimates in low probability and overestimates in
high probability, similar to the PMMP (Figure 7). Second,
the statistical model has better reliability and resolution than
the PMMP for both AN and BN categories. In terms of
ROCS, the statistical model is better than the PMMP, espe-
cially over East Asia, where the PMMP has marginal skill
close to 0.5 (figure not shown). Third, the statistical model
performs better for AN than BN events in Asian and East
Asian locations, whereas the PMMP has similar skill for both
categories.
[24] The results here show that, in general, the statistical

model outperforms the PMMP during the hindcast period of
1983–2005. However, its skill may be overestimated due to

overfitting, even though cross-validation was used to assess
the statistical model.

5. Comparison of Dynamical
and Statistical Prediction

[25] Next we compared the PMMP and the statistical
model during the hindcast as well as the real-time forecast
period. However, since the real-time coupled MME product
has been available for only a few years, there are insufficient
samples for a quantitative estimate and a well-grounded
conclusion. Nonetheless, it is still worthwhile to examine the
recent real-time operational forecasts. We first show case
studies for two summers after the mature phase of El Niño
(1998 and 2010) and two summers after the mature phase of
La Niña (1999 and 2009) (see Figure 8).
[26] The two summers after the mature phase of El Niño

selected here exhibit quite different precipitation anomalies
in the observations, particularly over East Asia. The summer
of 1998 exhibited the typical pattern of the decaying El Niño
impact, with wetter-than-normal conditions over East Asia,
some parts of the Indian subcontinent, and the Indian Ocean,

Figure 8. Anomalous JJA mean precipitation from (a, d, g, j) observations, and probabilities (%) from (b,
e, h, k) PMMP, and (c, f, i, l) the statistical model for the years 1998 and 1999 (hindcast), and for 2009 and
2010 (real-time forecast). Probabilities for both AN and BN categories are shown in the same map for the
PMMP and the statistical model predictions. Standardized Niño 3.4 indices for the preceding DJF seasons
are provided to the upper right of the right panels.
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together with drier-than-normal conditions over the Bay of
Bengal, South China Sea, Philippines Sea, and tropical
Western Pacific. Further, although the summer of 1998 had a
dipole pattern of anomalous precipitation over the tropical
western Pacific and East Asia, the summer of 2010 had a
triple pattern over the same region. It has been suggested that
the 2009/10 event might have been an atypical El Niño, i.e.,
El Niño Modoki [Ashok et al., 2007] or Central-Pacific-type
El Niño [Yu and Kao, 2007; Kao and Yu, 2009], which
yields different patterns of sea-surface warming and cooling
in the tropical Pacific and has impacts on different extra-
tropical regions. Further, it is interesting to note that the
PMMP has better skill than the statistical model for the
summer of 2010, whereas the statistical model is more
skillful for the summer of 1998. This suggests that the sta-
tistical model is unable to capture the impact of an atypical
ENSO on precipitation over the WP-EA region.
[27] The results for the two summers after the mature

phase of La Niña (1999 and 2009) indicate that the current
statistical model is more useful for predicting below-normal
precipitation conditions over many parts of Asia. In the
summer of 1999, below-normal conditions were found over
continental Asia (except southern China) and above-than-
normal conditions were seen over the Philippines and the
surrounding areas. In the statistical prediction, La Niña
shows great impact on the drier-than-normal conditions over

continental Asia, and the dry signals over parts of western
Asia, Mongolia, and northeast China are consistent with
observations. The PMMP, however, predicts below-normal
rainfall only over parts of western Asia, but near normal or
uncertain rainfall over most of continental Asia. The
observed pattern for the summer of 2009 is similar to that in
1999, indicating below-normal conditions over most of
continental Asia (except western China). Since the magni-
tudes of the Niño 3.4 indices for 1998/99 and 2008/09 are
different, the strength of the impacts associated with La Niña
events given by the statistical models are also different. In
other words, the patterns of the statistical model are consis-
tent, but the strengths of the associated patterns are different.
In contrast, the PMMP indicates that most of the ASM
region has near normal or uncertain rainfall.
[28] Figure 9 summarizes the skill comparison between

the PMMP and the statistical model for both the hindcast (or
cross-validated) period (1983–2005) and the real-time (or
independent) period (2006–2011). First, it can be seen that
the statistical model has generally better skill for JJA pre-
cipitation over the East Asian region in both AN and BN
categories during the hindcast period. However, the PMMP
is more skillful after the mature phase of an atypical ENSO
such as in the summers of 1992, 2003, and 2005. Second,
the PMMP also seems to have better skill during the inde-
pendent forecast period of 2006–2011, partly suggesting that

Figure 9. ROCS of historical (1983–2005) and real-time (2006–2011) JJA mean precipitation predic-
tions for (a) AN and (b) BN categories for East Asia (20°–50°N, 90°–150°E). Solid bars denote the PMMP
and hatched bars denote the statistical model forecasts. Blue bars indicate the summers after the peak of El
Niño Modoki events. Dashed line corresponds to climatological forecast.
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cross-validation may overestimate the forecast skill of the
statistical model. The relatively lower skill with the statisti-
cal model for this period may also be due to the shift in the
conventional ENSO pattern, which may not be well
presented.
[29] The dependency of the forecast skills on the ENSO

phase was further investigated. Table 2 gives a summary of
the PMMP and statistical model forecast skills during sum-
mers after the mature phase of El Niño and La Niña and after
normal winters. First, the statistical forecast is more sensitive
to the ENSO phase. The statistical model has the highest
skill during summers after the mature phase of El Niño but
the lowest skill during summers after normal winters over
both the ASM region and East Asia. Second, the PMMP
exhibits the lowest skill during summers after the mature
phase of La Niña over the ASM and East Asian regions.
During neutral years, the PMMP has better skill than the
statistical model, whereas the statistical model performs
better during summers after El Niño or La Niña. These
results suggest that the statistical model has considerable
potential for improving long-lead predictions of the ASM
precipitation. However, it is also clear that the PMMP per-
forms better in summers after normal or atypical ENSO
winters.

6. Summary and Discussion

[30] The long-lead probabilistic predictions of the APCC
multimodel system and the statistical model for the ASM
precipitation during 1983–2011 were assessed. Particular
attention was paid to the probabilistic prediction of precipi-
tation in summer after the mature phase of ENSO. It is found
that the general patterns of prediction skill of the coupled
models for MAM and JJA precipitation in all years are
almost the same as those computed for seasons after mature
phase of ENSO. However, the skill for MAM is not higher
than that for JJA after ENSO-neutral winters. This suggests
that the skill of the coupled models in predicting MAM and
JJA precipitation mainly comes from their ability of cap-
turing ENSO teleconnection.
[31] Previous studies have suggested that the ASM pre-

cipitation in summers after the mature phase of ENSO tends
to be more predictable. We therefore developed the simple
lag-regression-based empirical probabilistic forecast model

for the ASM precipitation using the preceding winter ENSO
condition as the predictor. We found that the regional dis-
tributions of the probabilistic composites associated with
El Niño and La Niña were not mirror images of each other.
After the peak phase of El Niño, the composite patterns
indicated wetter-than-normal conditions over the Indian
Ocean, Central Asia, central part of northern China, North-
east Asia, Korea, and Japan, but below-normal rainfall along
coastal East Asia, eastern India, and the tropical western
Pacific. A basic understanding of the simultaneous influence
of El Niño on the ASM suggests that the monsoon rainfall
should be substantially deficient, yet this was not often the
case for the Indian monsoon because of other local factors
[Slingo and Annamalai, 2000]. After the peak of La Niña,
drier-than-normal conditions are more likely in many loca-
tions in continental Asia.
[32] The comparison between the PMMP and statistical

model in terms of the ASM precipitation forecast indicates
that, in general, the statistical model outperforms the PMMP
for the retrospective forecast period, whereas the PMMP is
more skillful during the real-time forecast period of the last 6
years, for both the AN and BN categories. This may indicate
that the cross-validated statistical prediction cannot avoid
overfitting. The relatively lower skill of the statistical model
for the later period may also be due to the shift in the con-
ventional ENSO pattern, which is not well presented by the
model. The statistical forecast is more sensitive to the ENSO
phase and proves useful with regard to La Niña-related tel-
econnection. However, it cannot properly capture the atmo-
spheric impact due to atypical ENSO during the early 1990s
and in the recent decade. In contrast, the PMMP exhibits
the lowest skill during summers after the mature phase of
La Niña, but gives a more stable and consistent forecast skill
even during atypical ENSO or normal years.
[33] Since the statistical model depends on the selection of

potential predictors and the available training period
[Rajeevan et al., 2007], it should be designed and assessed
carefully to avoid artificial predictability. In view of the
preconditions, Kung and Sharif [1982] and McBride and
Nicholls [1983] highlighted the need for regular training or
updating of the forecast models with the latest data for better
forecasts. Furthermore, Nicholls [1984] and Rajeevan et al.
[2007] identified the near optimal length for the training
period according to their own experimental designs. In par-
ticular, the necessity for updating model equations stems
from the fact that the time series of meteorological para-
meters are statistically nonstationary.
[34] Because the statistical model adopted here uses the

ENSO phase in the preceding boreal winter as the predictor
and was trained for the historical 23 years (covering the
same period of 1983–2005 to provide a corresponding pre-
diction to the hindcast of the PMMP), it might not be able to
capture signals associated with other climate modes or
impacts due to the changing background climate. For
instance, the East Asian summer monsoon can also be
affected by simultaneous local SST variability [S. S. Lee
et al., 2011], North Atlantic Oscillation (NAO; Wu et al.
[2009]), and Eurasian pattern activity [Lee et al., 2005;
Min and Jhun, 2010]. Regional and planetary scale features
of the atmosphere–ocean system for the monsoon season,
such as the prevailing circulation over the midlatitudes of
Eurasia and the South Indian Ocean as well as anomalous

Table 2. ROCS of the PMMP and Statistical JJA Mean Precipita-
tion Forecasts for the AN and BN Categories for the Period Cover-
ing Both Historical and Real-Time Forecastsa

AN BN

PMMP Statistical PMMP Statistical

ASM Region
All years 0.55 (0.54) 0.55 (0.55) 0.54 (0.54) 0.56 (0.56)
El Niño years 0.55 (0.57) 0.60 (0.60) 0.56 (0.57) 0.59 (0.60)
Neutral years 0.56 (0.55) 0.50 (0.50) 0.55 (0.54) 0.50 (0.50)
La Niña years 0.53 (0.52) 0.56 (0.57) 0.52 (0.51) 0.57 (0.58)

East Asia Region
All years 0.52 (0.52) 0.53 (0.55) 0.52 (0.52) 0.53 (0.53)
El Niño years 0.54 (0.54) 0.57 (0.59) 0.55 (0.56) 0.53 (0.55)
Neutral years 0.53 (0.51) 0.50 (0.50) 0.52 (0.51) 0.50 (0.50)
La Niña years 0.50 (0.50) 0.53 (0.55) 0.49 (0.50) 0.54 (0.55)

aValues in parentheses are the ROCS for historical forecasts only.
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warmer SST over the WNP region and ENSO, could con-
tribute to the monsoon drought over India [Sikka, 2003].
There has also been a decadal change in the East Asia-WNP
summer monsoon relationship from an ENSO-related oscil-
lation in 1979–1993 to a monsoon-dominated oscillation in
1994–2004 [Kwon et al., 2005]. Also, the inverse relation-
ship between ENSO and the Indian summer monsoon has
broken down in recent decades [Kumar et al., 1999].
Moreover, some of the recent Pacific warming events have
shown different characteristics compared to the conventional
El Niño [Ashok and Yamagata, 2009], which leads to dif-
ferent impacts on the East Asian rainfall after the peak of
ENSO [Feng et al., 2011].
[35] Finally, it is worthwhile to assess the skill of the

PMMP, which comprises state-of-the-art coupled models,
and to compare it with the pure statistical model, focusing on
the ASM precipitation after the mature phase of ENSO. The
statistical model, which trades off goodness-of-fit against
stability, has potential for improving long-lead predictions.
However, the PMMP is more stable, and, in particular, the
dynamical ENSO prediction skills are reasonably good on
long-range time scales of 6 months or beyond. Therefore, to
improve the long-lead ASM precipitation forecast skills,
statistical post-processing of model outputs (e.g., down-
scaling) could also be applied by utilizing such relatively
predictable information from a dynamical model as the
predictor.
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